Plates-Formes de Recherche en Neurosciences

logo amu logo cnrs

Plates-formes PFRN

Accueil > Bibliographie > Systemic Responses following Brain Injuries and Inflammatory Process (...)

Systemic Responses following Brain Injuries and (...)

Neuroimmunomodulation. 2015 ;22(6):347-57
Systemic Responses following Brain Injuries and Inflammatory Process Activation Induced by a Neurotoxin of Androctonus Scorpion Venom.
aibi-Djennah Z1, Martin-Eauclaire MF, Laraba-Djebari F.

OBJECTIVE :

Kaliotoxin 2 (KTX2), a neurotoxin isolated from Androctonus australis hector scorpion venom, presents a high affinity with the voltage-gated potassium channels. The targets of KTX2 in the brain and its toxic effects on the cerebral cortex have been extensively studied ; however, its deleterious systemic effects on other organ systems have not yet been investigated. Inflammatory response induced by KTX2 is supported by cytokine release which could provoke multiple organ dysfunction and diverse biological disorders in mammals. The possibility that inflammatory response and brain injuries induced by KTX2 may lead to functional disturbances, e.g. in the pancreas and the liver, were investigated. The contribution of IL-6 and TNF-α to the modulation of pathophysiological effects induced by KTX2 was also tested. METHODS :

NMRI mice were injected by the intracerebroventricular route with a sublethal dose of KTX2 or saline solution. Inflammatory response and oxidative stress were assessed in sera and tissue homogenates. Biomarkers of pancreatic and hepatic functions and the correlation with tissue damage in the brain, liver and pancreas were also analyzed. RESULTS :

The obtained results revealed that KTX2 injection induced an inflammatory process activation and imbalanced redox status. It also induced severe alterations in cerebral cortex, hepatic and pancreatic tissues associated with a significant increase in pancreatic and hepatic pathological biomarkers. Cytokine antagonists injected 30 min prior to KTX2 led to a significant reduction of all disturbances induced by KTX2. CONCLUSION :

In addition to its significant toxicity on the central nervous system, KTX2 can also affect pancreatic and hepatic functions, probably by an indirect mechanism involving activation of the inflammatory response with release of IL-6 and TNF-α. © 2015 S. Karger AG, Basel.

PubMed

    Ils nous font confiance

  • logo amu
  • logo cnrs
  • logo inserm
  • logo AP-HM
  • logo F�d�ration pour la Recherche sur le Cerveau
  • logo Fondation pour la Recherche Medical en France
  • logo IBiSA
  • logo Europe programme FEDER
  • logo Agence Nationale de la Recherche
  • logo Plateforme Technologique Aix-Marseille
  • logo Vect-Horus
  • logo Neuron Experts