Plates-Formes de Recherche en Neurosciences

logo amu logo cnrs

Plates-formes PFRN

Accueil > Bibliographie > Spike-timing dependent plasticity beyond synapse : pre- and post-synaptic (...)

Spike-timing dependent plasticity beyond synapse : pre- (...)

Frontiers in Neuroscience, 2010
Spike-timing dependent plasticity beyond synapse : pre- and post-synaptic plasticity of intrinsic neuronal excitability
Debanne D, Poo MM

Long-lasting plasticity of synaptic transmission is classically thought to be the cellular substrate for information storage in the brain. Recent data indicate however that it is not the whole story and persistent changes in the intrinsic neuronal excitability have been shown to occur in parallel to the induction of long-term synaptic modifications. This form of plasticity depends on the regulation of voltage-gated ion channels. Here we review the experimental evidence for plasticity of neuronal excitability induced at pre- or postsynaptic sites when long-term plasticity of synaptic transmission is induced with Spike-Timing Dependent Plasticity (STDP) protocols. We describe the induction and expression mechanisms of the induced changes in excitability. Finally, the functional synergy between synaptic and non-synaptic plasticity and their spatial extent are discussed.

on line

PubMed

    Ils nous font confiance

  • logo amu
  • logo cnrs
  • logo inserm
  • logo AP-HM
  • logo F�d�ration pour la Recherche sur le Cerveau
  • logo Fondation pour la Recherche Medical en France
  • logo IBiSA
  • logo Europe programme FEDER
  • logo Agence Nationale de la Recherche
  • logo Plateforme Technologique Aix-Marseille
  • logo Vect-Horus
  • logo Neuron Experts