Plates-formes PFRN

Accueil > Bibliographie > Autoradiographic localization of a non-reducible somatostatin analog (...)

Autoradiographic localization of a non-reducible (...)

Peptides. 1985 Jul-Aug ;6(4):713-9
Autoradiographic localization of a non-reducible somatostatin analog (125I-CGP 23996) binding sites in the rat brain : comparison with membrane binding.
Epelbaum J, Dussaillant M, Enjalbert A, Kordon C, Rostene W.

The regional distribution of somatostatin binding sites in the rat brain was determined by quantitative autoradiography, using 125I-CGP 23996, a non-reducible somatostatin analog. In preliminary experiments, kinetic properties of 125I-CGP 23996 binding to rat brain membranes and slide mounted frozen brain sections were compared and found similar. In addition, distribution of 125I-CGP 23996 and 125I-N-Tyr-SRIF14 binding sites on membrane prepared from 10 different rat brain structures were closely correlated (r = 0.91, 2 p less than 0.01), indicating that the non-reducible analog recognizes the same binding site as the Tyr-extended native peptide. Highest levels of 125I-CGP 23996 binding sites were found in anterior temporal, frontal and cingular cortex as well as hippocampus. Moderate levels were found in the remaining part of the limbic system including amygdala, olfactory tubercles and bed nucleus of the stria terminalis. In the brain stem, nuclei involved in the auditory system such as the ventral cochlear nucleus and the superior olive nucleus, contained high levels of 125I-CGP 23996 binding sites. The distribution of 125I-CGP 23996 binding sites roughly correlated with that of the endogenous peptide in most structures, except in the mediobasal hypothalamus.


    Ils nous font confiance

  • logo amu
  • logo cnrs
  • logo inserm
  • logo AP-HM
  • logo F�d�ration pour la Recherche sur le Cerveau
  • logo Fondation pour la Recherche Medical en France
  • logo IBiSA
  • logo Europe programme FEDER
  • logo Agence Nationale de la Recherche
  • logo Plateforme Technologique Aix-Marseille
  • logo Vect-Horus
  • logo Neuron Experts