Plates-formes PFRN

Accueil > Bibliographie > An islet activating protein-sensitive G protein is involved in dopamine (...)

An islet activating protein-sensitive G protein is (...)

J Biol Chem. 1987 Nov ;262(31):15106-10
An islet activating protein-sensitive G protein is involved in dopamine inhibition of angiotensin and thyrotropin-releasing hormone-stimulated inositol phosphate production in anterior pituitary cells.
Journot L, Homburger V, Pantaloni C, Priam M, Bockaert J, Enjalbert A.

In primary culture of anterior pituitary cells, dopamine inhibited the angiotensin (AII)-stimulated inositol phosphate production by 28 +/- 2.5% (n = 14), with an EC50 of 660 +/- 228 nM (n = 8). This effect was blocked by (+)-butaclamol, a specific dopamine receptor antagonist. RU 24926, a D2 specific agonist, but not SKF 38393, a specific D1 agonist, inhibited AII-stimulated inositol phosphate production, suggesting that this dopamine effect is mediated through a dopamine receptor of the D2 subtype. Dopamine also partially inhibited (25%) inositol phosphate production stimulated by thyrotropin-releasing hormone (TRH). Our results suggest that the dopamine-mediated inhibition of hormonally stimulated inositol phosphate production is probably not mediated through the known inhibitory effects of dopamine on cAMP and Ca2+ intracellular concentrations. Although unknown, the mechanism by which dopamine inhibited the AII and TRH-stimulated inositol phosphate production implicates a GTP binding protein sensitive to the islet activating protein (IAP) since dopamine effects were blocked by this toxin. The alpha subunit of the GTP binding protein involved could be one of the three ADP-ribosylated proteins found in anterior pituitary cells in primary cultures, the alpha o (39 kDa), the alpha i (41 kDa), and an alpha subunit of 40 kDa. Indeed, we show here that this 40-kDa IAP substrate, already described in a few tissues, is present in anterior pituitary cells. The negative coupling between dopamine receptors and the AII or TRH inositol phosphate production systems, could be implicated in the dopamine inhibition of the AII- and TRH-stimulated prolactin release since such an inhibition is blocked by IAP. Our results suggest that the negative regulation of inositol phosphate production is one of the mechanisms by which dopamine controls hormonally stimulated prolactin release.


    Ils nous font confiance

  • logo amu
  • logo cnrs
  • logo inserm
  • logo AP-HM
  • logo F�d�ration pour la Recherche sur le Cerveau
  • logo Fondation pour la Recherche Medical en France
  • logo IBiSA
  • logo Europe programme FEDER
  • logo Agence Nationale de la Recherche
  • logo Plateforme Technologique Aix-Marseille
  • logo Vect-Horus
  • logo Neuron Experts